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Introduction

The Grassmannian Manifold Grk(Rn) parametrizes the k dimensional planes
through the origin in n-dimensional real space. Identifying the Schubert cell
construction of these manifolds allows us to perform a variety of other cal-
culations. Also, we consider group actions, which allow us to investigate
the equivariant cohomology and intersections of such grassmannians with C2

group actions. Others such as [1] have contributed to the theory of Equiv-
ariant Cohomology on general manifolds, so we seek to find the necessary
extensions to the theory for application to Grassmannian manifolds.

Theory

The Grassmannian Manifold Grk(Rn) is k(n−k)-dimensional [2]. A basis for
a k-plane in Rn is a collection of k row vectors of n columns each, forming
a matrix. For example, to identify a 1-plane through the origin of R2, we
can use a two column row vector. To identify a 2-plane in R4, we can use
a two row, four column matrix. When writing a k-plane as the rowspace of
a matrix, we can always choose a matrix row echelon form. Each family of
rowspace matrices with a unique degree of freedom or unique arrangement of
its degrees of freedom is identified with a unique Schubert cell1, notated as
Ω with a subscript of the unique Schubert symbol, the sequence of degrees of
freedom in the matrix, in accordance with notation from [3]. An equivalent
notation to the Schubert symbol is the Young diagram, in which each block

1Importantly, we use Schubert cell here really to mean the interior of the cell in con-
sideration, not it’s closure
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Figure 1: Gr1(R2) visualized three different ways.

represents a degree of freedom in the Schubert cell and each number in the
Schubert symbol, left to right, tells us the number of blocks in each row of the
Young diagram, top to bottom. For example, a Schubert symbol of (1, 1, 2)

could also be represented as the Young diagram . A Schubert symbol of

(2, 3) could also be represented as a Young diagram of . The process of
finding the cells (in our case, Schubert cells) which make up a larger manifold
is known as cell decomposition.

Example. Consider the construction of Gr1(R2).
As the leftmost item of 1 portrays, Gr1(R2) is the parametrization of 1-d

planes (i.e.: lines) through R2. We can represent these planes as the set of
row vectors

{rowspace[a b] : a, 0 6= b ∈ R} =
{

rowspace
[a
b

1
]

: a, 0 6= b ∈ R
}

= Ω ,

{rowspace[a 0] : 0 6= a ∈ R} =
{

rowspace
[
1 0
]}

= Ω∗

Because k = 1 and n − k = 1, we know Ω is the largest Schubert cell in
Gr1(R2), which we can also write as Ω(1). We also observe that the remain-
ing Schubert symbols comprise a filtration of the maximal Schubert symbol
[2]. To determine how the cells attach to one another, we take the limit
of the rowspace of a matrix of a higher dimensional cell as chosen sets of
free variables go to infinity. Thus, for Gr1(R2), we have a Schubert cell Ω(1)

associated with a line, attached at positive and negative infinity to a point,
Ω(0).

Example. For Gr1(R3), we imagine adding a dimension to the graph on the
left of 1, in which case our parametrization sweeps out the interior of a
half sphere rather than the interior of a half circle. Now we have a maximal
Schubert symbol of (2). By filtration property of cell decomposition, we know
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this must attach to Schubert cells with symbols of (1) and (0). To calculate
these attachments, we take the following limits:

lim
x→∞

rowspace
[
ax bx 1

]
= lim

x→∞
rowspace

[
a
b

1 1
bx

]
= rowspace

[
a
b

1 0
]

lim
x→∞

rowspace
[
ax b 1

]
= lim

x→∞
rowspace

[
1 b

ax
1
ax

]
= rowspace

[
1 0 0

]
Because we can choose a and b to be positive or negative independently,
there will two different pairs of values that yield the same ratio between a
and b. This tells us that Ω(2) attaches to Ω(1) in a ”times 2” map. Our
second calculation tells us that Ω(0) is a point on the boundary of Ω(2). In
fact, this will look as if we attached the interior of a 2 dimensional disk to the
rightmost object in 1, wrapping the boundary of the disk around the circle
twice. According to [2] Gr1(Rn) ∼= RP n−1, projective space of dimension
n− 1, so as we increase n from 3 we know that the attachment maps will be
”times 2” maps from the boundary of the n dimensional Schubert cell to the
space Gr1(Rn − 1).

Furthermore, because k and n − k are complementary dimensions in
Rn, Grk(Rn) ∼= Grn−k(Rn)2, and their submanifolds of equal dimensions will
appear as matrix transposes of one another. Before progressing to equivari-
ant cohomology, let us consider another cell decomposition example with a
grassmannian of higher dimension.

Example. See 1.

Dimension Cell Young diagram Dimension Cell Young diagram
6 Ω(3,3) 3 Ω(1,2)

Ω(0,3)

5 Ω(2,3)

2 Ω(1,1)

4 Ω(2,2) Ω(0,2)

1 Ω(1)

Ω(1,3) 0 Ω∗

Table 1: Cell Decomposition for Gr2(R5)

2I’m still struggling with writing the homeomorphism here. My brain first went to
Poincare duality, and I feel drawn to include that somewhere, but I’m pretty sure this
isn’t the place.
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Once we understand how to calculate cell decomposition in the classical
setting, we can consider equivariant topology, specifically formed by applying
C2 group actions to general manifolds. We can apply a Z2 group action to
a grassmannian, cell by cell, in matrix representation by choosing an order-
ing of n plus and minus signs. This action will be well defined and linear
on the Grassmannian because it is a linear action on Rn. For example, the
− + −+ action on R4 takes (w, x, y, z) 7→ (−w, x,−y, x), so the action is
linear. Because −+−+ is linear on R4, Grk(R−+−+) inherits a well-defined
action. We can simplify the ordering of plus and minus signs to the notation
Grk(Rp,q) where p = n and q is the number of minus signs in the ordering,
but this simplification removes the specificity of the ordering (i.e.: R4,2 could
correspond to an ordering of − − ++ or − + −+). We find the set of fixed
points in a given Schubert cell by applying the chosen sign to all values in the
corresponding column and simplifying to row echelon form. All degrees of
freedom which observe a sign change are unfixed while all degrees of freedom
which retain the same sign are fixed. Similar to how we simplify the (p, q)
notation when applying group actions to a manifold, we can simplify our
notation of the set of fixed points in a given Schubert cell with a bidegree
tuple, given by (dimension of cell, number of dimensions within manifold not
fixed).3

Example: Again, consider the Grassmannian Gr2(R5) with the −+−+−
action on R5. We show the calculation of the fixed points for the cell Ω .

In the matrix below, a, b, c, d represent arbitrary constants.

− + − + −

rowspace

[
a 1 0 0 0
b 0 c d 1

]
7→ rowspace

[
−a 1 0 0 0
−b 0 −c d −1

]
= rowspace

[
−a 1 0 0 0
b 0 c −d −1

]
= Ω (−a, b, c,−d)

which only is fixed if a = d = 0, so the set of fixed points in this particular
cell is given by Ω (0, b, c, 0).

3I think I’m beginning to get what you were saying about needing to do a change of
basis for some calculations, but I’m also not nearly confident enough in my understanding
o why or how to do it correctly that I’m gonna change anything last minute.
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Dimension Set of Fixed Points Dimension Set of Fixed Points
6 Ω (0, b, 0, d, 0, f) 3 Ω (0, 0, 0)

Ω (0, b, 0)
5 Ω (a, 0, c, 0, 0)

2 Ω (0, b)

4 Ω (a, 0, 0, d) Ω (0, b)

1 Ω (0)
Ω (0, b, c, 0) 0 Ω∗

Table 2: The set of fixed points in each submanifold of Gr2(R−+−+−). Letters
fill in alphabetically left to right, top to bottom.

The fixed points become important when calculating the equivariant co-
homology of a manifold, a technique which allows us to calculate the inter-
sections of submanifolds with abelian group operations rather than through
completely geometric means. According to [1], we must calculate the neigh-
borhoods of the fixed points in each submanifold to find the bidegree of each
copy of M2 in the cohomology. Once we know the bidegrees of the neighbor-
hoods of the fixed points, we can represent the equivariant cohomology of
the whole space with a q vs. p graph of upper and lower cones. Depending
on the bidegree of the neighborhood of the submanifold, we will have shifted
copies of M2 where the generator occurs at the point on the graph indicated
by the bidegree. By generally accepted notation, we shift the origin points
on the graph up and to the right.

Example: Let us consider Gr1(R3,1), visualized by 2 with red colored dots
and lines marking the fixed set. As a sample neighborhood calculation, we
consider Ω(1) with the ordering + − + applied. From one of our previous
examples, we know that the attachment from the maximum dimensional cell
to Ω(1) is given by

lim
x→∞

rowspace
[
ax bx 1

]
= rowspace

[
a
b

1 0
]

Theorem 1.12 in [1] instructs us to inspect the neighborhood of fixed points.
In this case, the only fixed point in Ω(1) is given by rowspace

[
0 1 0

]
, so

we know that b must go to infinity ”faster” than a. To determine the ratio
between how fast each goes to infinity, we look to the set of fixed points in
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Figure 2: Gr1(R3) with a reflection action and its cohomology graph.

the maximal cell, Ω(2) with the same ordering applied, which in this case is
rowspace

[
a 0 1

]
. In other words, we need a to stay fixed when we apply the

action to the neighborhood of Ω(1) while b changes signs, so our neighborhood
of Ω(1) is given by rowspace

[
ar2 br3 1

]
. Thus, N(Ω(1)) ∼= Ω(1)×R1,1 so the

the cohomology of Gr1(R3,1) has an M2 generator at the coordinates (1, 1)
on our graph, highlighted with a red dot on the graph in 2, which displays
the entire cohomology of Gr1(R3).

Calculations

Gr2(R4,1) Calculations (r can be treated as a dimension of freedom, while
any x or y is a fixed number.):

Gr2(R−+++) Fixed set Neighborhood of fixed points Tangent bundle
a b
c d Ω (0, b, 0, d) ∅ R0,0

a
b c Ω (0, 0, c) Ω1,0 (a, r,−xa,−rx) R2,1

a
b Ω (0, 0) Ω1,1 (0, b, r, r2) R2,1

a b Ω (a, b) Ω1,0 (a, b, ax, bx) R2,1

a Ω (a) Ω1,1 (a, b, c, d) R3,2

pt Ω1,1 (r, r2, r, r2) R4,2
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Gr2(R+−++) Fixed set Neighborhood of fixed points Tangent bundle
a b
c d Ω (a, 0, c, 0) ∅ R0,0

a
b c Ω (0, b, c) Ω1,0 (a, r,−ax + y,−rx) R2,1

a
b Ω (0, b) Ω1,1 (0, b, r, r2) R2,2

a b Ω (0, b) Ω1,0 (r,−rx, b,−bx) R2,1

a Ω (0) Ω1,1 (a, 0, r, d) R3,1

pt Ω1,1 (r2, r, r2, r) R4,2

Gr2(R++−+) Fixed set Neighborhood of fixed points Tangent bundle
a b
c d Ω (0, 0, c, d) ∅ R0,0

a
b c Ω (a, b, 0) Ω1,0 (r, rx, 0, 0) R2,1

a
b Ω (a, 0) Ω1,1 (bx, b, rx, r) R2,1

a b Ω (a, 0) Ω1,0 (r, b, 0, x) R2,2

a Ω (0) Ω1,1 (a, 0, r, d) R3,1

pt Ω1,1 (0, 0, c, d) R4,2
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Figure 3: Graphical representation of the calculations for Gr2(R4,1) ∼=
Gr2(R4,3.

Gr2(R+++−) Fixed set Neighborhood of fixed points Tangent bundle
a b
c d Ω (a, b, 0, 0) ∅ R0,0

a
b c Ω (a, 0, 0) Ω1,0 (r, rx, d, dx) R2,1

a
b Ω (a, b) Ω1,1 (ar2, r2, br − ar3,−r3) R2,2

a b Ω (0, 0) Ω1,0 (r2, b,−r, 0) R2,1

a Ω (a) Ω1,1 (a, b, r, d) R3,2

pt Ω1,1 (a, b, c, d) R4,2
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Gr2(R4,2) calculations:

Gr2(R−−++) Fixed set Neighborhood of fixed points Tangent bundle
a b
c d Ω (0, 0, 0, 0) ∅ R0,0

a
b c Ω (a, 0, c) Ω1,0 (a, r,−ax,−rx) or (rx, r, dx, d) R2,2

a
b Ω (a, 0) Ω1,1 (bx, b, rx, r) R2,2

a b Ω (0, b) Ω1,0 (r, b, rx, bx) R2,2

a Ω (0) Ω1,1 (a, 0, r, d) R3,3

pt Ω1,1 (a, b, c, d) R4,4

Gr2(R−+−+) Fixed set Neighborhood of fixed points Tangent bundle
a b
c d Ω (a, 0, 0, d) ∅ R0,0

a
b c Ω (0, 0, 0) Ω1,0 (a, r, 0, 0) or (0, r, 0, d) R2,1

a
b Ω (0, b) Ω1,1 (x, b, r, 0) R2,2

a b Ω (a, 0) Ω1,0 (r2, b,−r, x) R2,2

a Ω (0) Ω1,1 (a, 0, r, d) R3,1

pt Ω1,1 (a, b, c, d) R4,2
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Gr2(R−++−) Fixed set Neighborhood of fixed points Tangent bundle
a b
c d Ω (0, b, c, 0) ∅ R0,0

a
b c Ω (0, b, 0) Ω1,0 (r, r2, x, d) or (a, r2, x, r) R2,2

a
b Ω (0, 0) Ω1,1 (0, b, 0, r) R2,1

a b Ω (0, 0) Ω1,0 (r, b, 0, 0) R2,1

a Ω (a) Ω1,1 (a, b, r, d) R3,2

pt Ω1,1 (a, b, c, d) R4,2
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Figure 4: Graphical representation of the calculations for Gr2(R4,2).
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Conclusion

Because our calculations for each action do not agree, shown in the discrep-
ancy in the graphs in 3 and 4, further research is required to determine how
to appropriately calculate the cohomology of Gr2(R4,2). Our results also ap-
pear misleading because they suggest that the ”L-block” cell (the only cell
with three degrees of freedom) has a 2-dimensional neighborhood, when the
dimension of the entire Grassmannian only makes it possible for a cell with
three degrees of freedom to have a 1-dimensional neighborhood. Further-
more, more research is required to discover a more generic way to attach the
L-block to our 4-dimensional Schubert cell, as in Gr2(R4,2) we had two limits
that didn’t attach completely generally, but each yielded results.

Also, as the exact bidegree of the neighborhood of each submanifold
changes with the ordering of plus and minus signs, determining the subman-
ifolds that must be distinguished when performing equivariant intersections
requires either more thorough examination of the neighborhoods or a better
geometric visualization of the space, in order to apply concepts from [1].
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