

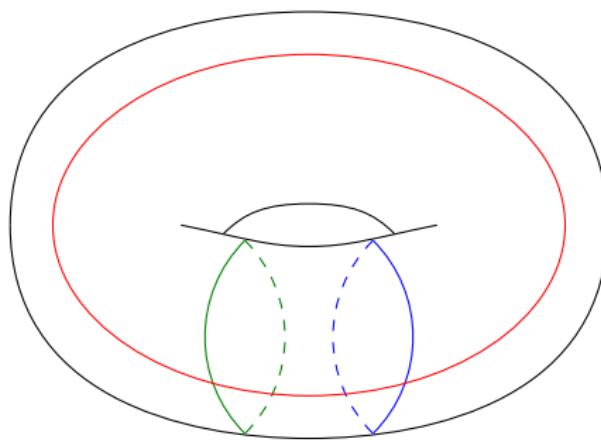
Equivariant Intersection Theory on Grassmannian Manifolds

Jeb Kilfoyle and Matthew Williams

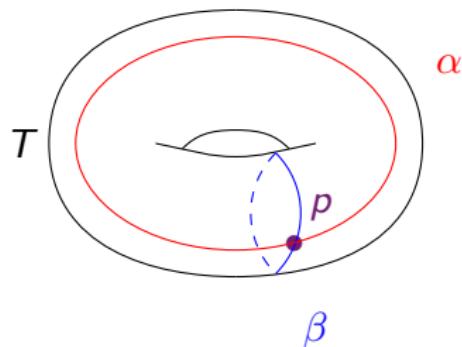
Gonzaga University

April 18th 2020

Introduction


- ▶ Topological Spaces
- ▶ Intersecting Different Spaces
- ▶ Space with (Group) Actions
- ▶ Grassmannians

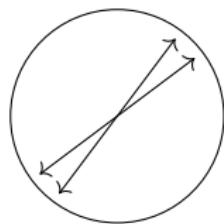
Examples


We explore Topological spaces (Grassmannians) and how they intersect (up to homotopy) and the behavior of their intersection when we apply group actions (\mathbb{Z}_2 actions).

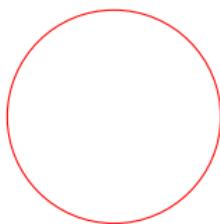
Intersection Theory

To understand classical intersection theory, we'll start with the submanifolds of a Torus. First we'll explain briefly the concept of homotopy.

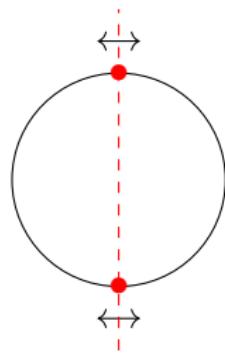
Intersection Theory



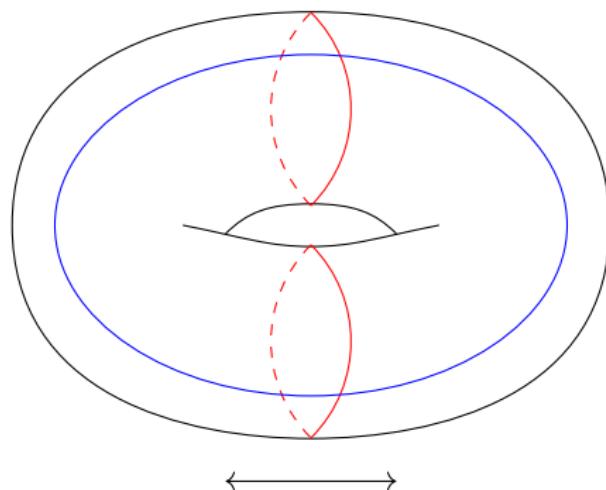
\cap	T	α	β	p
T	T	α	β	p
α	α	\emptyset	p	\emptyset
β	β	p	\emptyset	\emptyset
p	p	\emptyset	\emptyset	\emptyset

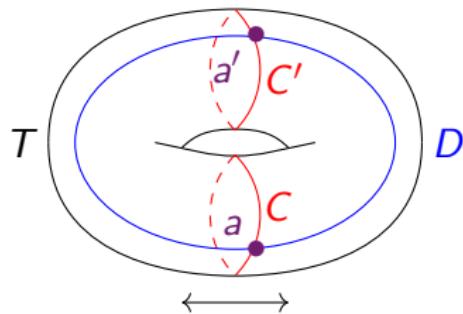

Table 1: Minimal intersection of submanifolds of a Torus.

Group Actions


Applying \mathbb{Z}_2 group actions can reflect, spin, or otherwise move a topological space. It also requires us to keep track of the set of fixed points(the fixed set).

$S^1_{\text{antipodal}}$


S^1_{trivial}


S^1_{flip}

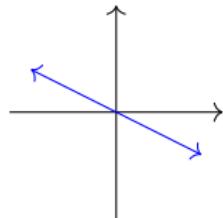
Equivariant Intersection Theory

We can also intersect the subspaces of spaces with group actions (known as equivariant intersection theory).

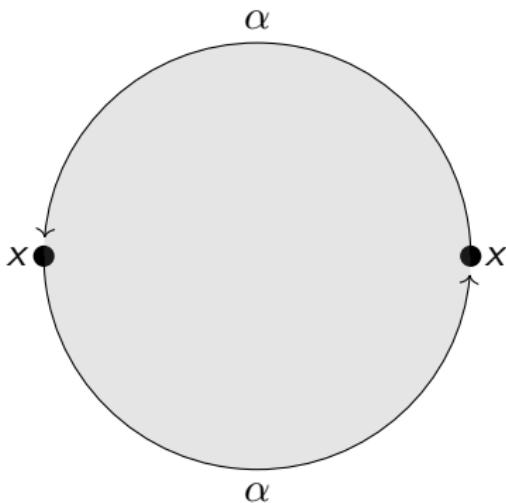
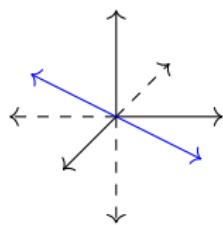
Equivariant Intersection Theory

\cap	T	C	C'	D	a	a'
T	T	C	C'	D	a	a'
C	C	C	\emptyset	a	\emptyset	\emptyset
C'	C'	\emptyset	C'	a'	\emptyset	\emptyset
D	D	a	a'	\emptyset	\emptyset	\emptyset
a	a	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
a'	a'	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

Table 2: Minimal Equivariant Intersection of Submanifolds of a Torus.

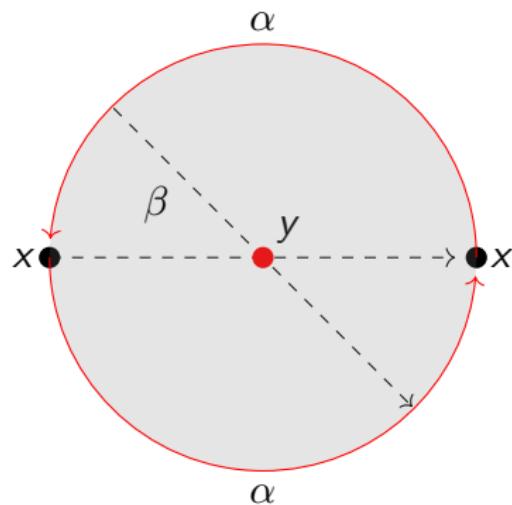

Grassmannians

The topological space we're interested in studying equivariantly is called a Grassmannian manifold.

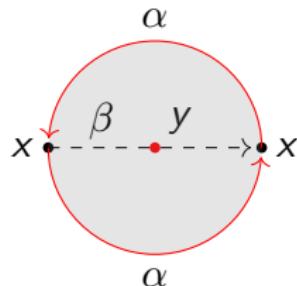


Definition

The Grassmannian $Gr_k \mathbb{R}^n$ is the set of all k-dimensional linear subspaces of a n-dimensional vector space.

Grassmannians

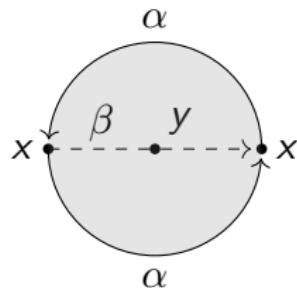


$\text{Gr}_1 \mathbb{R}^2$



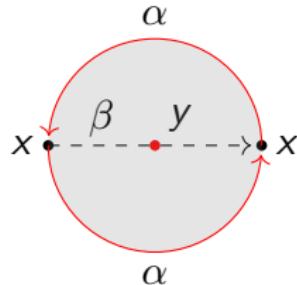
$\text{Gr}_1 \mathbb{R}^3$

Equivariant Action on a Grassmannian


Equivariant Intersection on a Grassmannian

\cap	$Gr_1(\mathbb{R}^3)$	α	β	x	y
$Gr_1(\mathbb{R}^3)$	$Gr_1(\mathbb{R}^3)$	α	β	x	y
α	α	α	x	x	\emptyset
β	β	x	y	\emptyset	y
x	x	x	\emptyset	\emptyset	\emptyset
y	y	\emptyset	y	\emptyset	y

Table 3: Minimal Equivariant Intersection of Submanifolds of $Gr_1(\mathbb{R}^3)$. Here $\alpha \neq \beta, x \neq y$.


Classical Intersection on a Grassmannian

\cap	$Gr_1(\mathbb{R}^3)$	α	β	x	y
$Gr_1(\mathbb{R}^3)$	$Gr_1(\mathbb{R}^3)$	α	β	x	y
α	α	x	x	\emptyset	\emptyset
β	β	x	x	\emptyset	\emptyset
x	x	\emptyset	\emptyset	\emptyset	\emptyset
y	y	\emptyset	\emptyset	\emptyset	\emptyset

Table 4: Minimal Classical Intersection of Submanifolds of $Gr_1(\mathbb{R}^3)$. Here $\alpha = \beta, x = y$.

Equivariant Intersection on a Grassmannian

\cup	$[Gr_1(\mathbb{R}^3)]$	$[\alpha]$	$[\beta]$	$[x]$	$[y]$
$[Gr_1(\mathbb{R}^3)]$	$[Gr_1(\mathbb{R}^3)]$	$[\alpha]$	$[\beta]$	$[x]$	$[y]$
$[\alpha]$	$[\alpha]$	$\rho[\alpha] + \tau[x]$	$\tau[x]$	$\rho[x]$	0
$[\beta]$	$[\beta]$	$\tau[x]$	$\tau[y]$	0	$\rho[y]$
$[x]$	$[x]$	$\rho[x]$	0	0	0
$[y]$	$[y]$	0	$\rho[y]$	0	$\rho^2[y]$

Table 5: Combined Table for Equivariant Intersection of Submanifolds of $Gr_1(\mathbb{R}^3)$. $[\alpha] = [\beta] + \rho$. Setting $\rho = 0$ and $\tau = 1$ recovers the non-equivariant table.

Future Work/Our Work

- ▶ Using classical intersection to solve for the relationships of submanifolds of Grassmannians in equivariant intersection
- ▶ Specify equivariant cohomology and intersection theory for Grassmannians
- ▶ Specify the attachment maps for Grassmannian submanifolds

Acknowledgements

- ▶ Dr. Eric Hogle
- ▶ McDonalds (Grant)
- ▶ Gonzaga University
- ▶ Dr. Christy Hazel